• 姓名: 马林
  • 性别: 男
  • 职务: 
  • 职称: 副研究员
  • 学历: 博士研究生
  • 电话: 020-85292337
  • 传真: 
  • 电子邮件: malin@gig.ac.cn
  • 通讯地址: 广东省广州市天河区五山科华街511号
    简  历:
  • 马林,男,19838月生,汉族,中共党员,副研究员。2006年毕业于兰州大学,获地质学学士学位。20092013年在中国科学院广州地球化学研究所学习,分别获构造地质学硕士学位和地球化学博士学位。2013年留所工作,任助理研究员。20161月晋升为副研究员。201611月和20199月分别获得国家留学基金委和中科院青年创新促进会资助,赴英国卡迪夫大学地球与环境科学学院开展为期一年和三个月的访问合作研究。近年来,主要从事青藏高原南部中-新生代岩浆岩的岩石成因、造山带深部动力学演化过程,以及相关的资源环境效应等。主持或参与国家自然科学基金青年和面上项目、国家重点研发专项、第二次青藏高原科考、中科院战略先导专项等项目的研究。曾获得中国科学院院长优秀奖(2013),入选中国科学院青年创新促进会会员(2017)。已发表国内外学术论文50余篇,其中以第一/通讯作者身份在JGRGCAJPetChem. Geol.Lithos等刊物发表SCI论文18篇。现为综合性期刊The Innovation青年编辑。

    2019.09-2019.12  英国卡迪夫大学地球与环境科学学院,高级访问学者; 

    2016.11-2017.10  英国卡迪夫大学地球与环境科学学院,访问学者; 

    2016.07-至今    中国科学院广州地球化学研究所,副研究员; 

    2013.07-2015.12  中国科学院广州地球化学研究所,助理研究员; 

    2009.07-2013.06  中国科学院广州地球化学研究所岩石地球化学专业,博士; 

    2006.09-2009.06  中国科学院广州地球化学研究所构造地质学专业,硕士; 

    2002.09-2006.07  兰州大学资源环境学院地质学系地质学专业,学士

    社会任职:
    研究方向:
  • 岩石地球化学专业,目前重点关注青藏高原及邻区中-新生代岩浆岩成因、深部物质循环、大陆地壳生长演化与造山带深部动力学演化过程及其资源环境效应等关键性科学问题。

    获奖及荣誉:
  •       201611月,入选中国科学院青年创新促进会 

       201307月,获中国科学院院长优秀奖 

          20162018年度,《Lithos》突出贡献审稿人(Outstanding Contribution in Reviewing

          2017年度《Journal of Asian Earth Science》突出贡献审稿人

    代表论著:
  • [1]. Ma, L., Gou, G.N., Kerr, A.C., Wang, Q.*, Wei, G.J., Yang, J.H., Shen, X.M., 2021. B isotopes reveal Eocene mélange melting in northern Tibet during continental subduction. Lithos, 106146, https://doi.org/10.1016/j.lithos.2021.106146.

    [2]. Ma, L.*, Wang, Q., Kerr, A.C., Tang, G.J., 2021. Nature of the pre-collisional lithospheric mantle in Central Tibet: Insights to Tibetan Plateau uplift. Lithos, 106076. https://doi.org/10.1016/j.lithos.2021.106076

    [3]. Ma, L.*, Kerr, A. C., Wang, Q.*, Jiang, Z.‐Q., Tang, G.‐J., Yang, J.‐H., et al., 2019. Nature and evolution of crust in southern Lhasa, Tibet: Transformation from microcontinent to juvenile terrane. Journal of Geophysical Research: Solid Earth, 124, 6452–6474. https://doi.org/10.1029/2018JB017106.

    [4]. Ma, L.*, Wang, Q.*, Kerr, A.C., Yang, J.H., Xia, X.P., Ou, Q., Yang, Z.Y., Sun, P., 2017. Paleocene (ca. 62 Ma) leucogranites in southern Lhasa, Tibet: products of syn-collisional crustal anatexis during slab roll-back? Journal of Petrology, 58(11): 2089-2114.

    [5]. Ma, L.*, Kerr, A.C., Wang, Q., Jiang, Z.Q., Hu, W.L., 2018. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos, 300-301, 212-226. doi: 10.1016/j.lithos.2017.11.023.

    [6]. Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Yang, J.H., Jiang, Z.Q., Liu, Y.S., Gou, G.N., Guo, H.F. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~35 Ma): Insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 41, 77-92, doi:10.1016/j.gr.2016.02.005.

    [7]. Ma, L., Wang, Q.*, Wyman, D. A., Jiang, Z.Q., Wu, F.Y., Li, X.H., Yang, J.H., Gou, G.N., Guo, H.F. 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases, Journal of Geophysics Research: Solid Earth, 120, 6159–6181, doi:10.1002/2015JB011966.

    [8]. Ma, L., Wang, B.D., Jiang, Z.Q., Wang, Q.*, Li, Z.X., Wyman, D.A., Zhao, S.R., Yang, J.H., Gou, G.N., Guo, H.F., 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197, 321-338.

    [9]. Ma, L., Wang, Q.*, Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013. Late Cretaceous crustal growth of southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from the Zhengga diorite-gabbro suites in the Gangdese area. Chemical Geology, 349–350, 54–70.

    [10]. Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013. Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100-80 Ma) magmatic "flare-up" in southern Lhasa (Tibet). Lithos, 172–173, 17–30.

    [11]. Ma, L., Wang, Q.*, Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F.. 2013. Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175–176, 315–332.

    [12]. Fan, J.-J., Wang, Q.*, Li, J., Wei, G.-J., Ma, J.-L., Ma, L.*, Li, Q.-W., Jiang, Z.-Q., Zhang, L., Wang, Z.-L., Zhang, L., 2021, Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet: Geochimica et Cosmochimica Acta, 297, 120-142. https://doi.org/10.1016/j.gca.2021.01.005.

    [13]. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Ma, Y.M., Huang, T.Y., 2021. Early Paleozoic and Late Mesozoic crustal reworking of the South China Block: Insights from Early Silurian biotite granodiorites and Late Jurassic biotite granites in the Guangzhou area of the south-east Wuyi-Yunkai orogeny. Journal of Asian Earth Sciences, 104890 (In press), https://doi.org/10.1016/j.jseaes.2021.104890.

    [14]. Liu, X., Wang, Q.*, Ma, L.*, Gou, G.N., Ou, Q. Wang, J., 2021. Late Jurassic Maofengshan two‐mica granites in Guangzhou, South China: fractional crystallization products of metasedimentary‐rock‐derived magmas. Mineralogy and Petrology, 1-19. https://doi.org/10.1007/s00710-020-00733-9

    [15]. Liu, X., Wang, Q.*, Ma, L.*, Yang, J.H., Gou, G.N., Ou, Q. Wang, J., 2020. Early Paleozoic intracontinental granites in the Guangzhou region of South China: Partial melting of a metasediment-dominated crustal source. Lithos, 376-377, 105763. https://doi.org/10.1016/j.lithos.2020.105763.

    [16]. Liu, X., Wang, Q.*, Ma, L.*, Wyman, D.A., Zhao, Z.H., Yang, J.H., Zi, F., Tang, G.J., Dan, W., Zhou, J.S., 2020. Petrogenesis of Late Jurassic Pb–Zn mineralized high δ18O granodiorites in the western Nanling Range, South China. Journal of Asian Earth Sciences, 192, 104236. https://doi.org/10.1016/j.jseaes.2020.104236.

    [17]. Liu X., Wang Q.*, Ma L.*, Yang Z.Y., Hu W.L., Ma, Y.M., Wang J., Huang T.Y., 2020. Petrogenesis of Late Jurassic two-mica granites and associated diorites and syenite porphyries in Guangzhou, SE China. Lithos. 364-365, 105537. https://doi.org/10.1016/j.lithos.2020.105537.

    [18]. 马林,张海祥,张伯友,牛贺才. 2008. 新疆北部库尔提蛇绿岩中角闪片岩的原岩恢复及其成因.岩石学报244):673-680.

    [19]. Zhou, J.S., Wang, Q., Xing, C.M., Ma, L., Hao, L.L., Li, Q.W., Wang, Z.L., Huang, T.Y., 2021. Crystal growth of clinopyroxene in mafic alkaline magmas. Earth and Planetary Science Letters. 568: 117005. https://doi.org/10.1016/j.epsl.2021.117005.

    [20]. Yang, Z.Y., Wang, Q., Hao, L.L., Wyman, D.A., Ma, L., Wang, J., Qi, Y., Sun, P. Hu, W.L., 2021. Subduction erosion and crustal material recycling indicated by adakites in central Tibet. Geology. 49(6): 708–712, https://doi.org/10.1130/G48486.1

    [21]. Hao, L.L., Wang, Q., Kerr, A.C., Yang, J.H., Ma, L., Qi, Y., Wang, J. Ou, Q., 2020. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin. doi: https://doi.org/10.1130/B35659.1

    [22]. Hu, W.L., Wang, Q., Yang, J.H., Tang, G.J., Qi, Y., Ma, L., Yang, Z.Y., Sun, P., 2020. Amphibole and whole-rock geochemistry of early Late Jurassic diorites, Central Tibet: Implications for petrogenesis and geodynamic processes. Lithos, 105644. https://doi.org/10.1016/j.lithos.2020.105644.

    [23]. Hu, W.L., Wang, Q., Yang, J.H., Tang, G.J., Ma, L., Yang, Z.Y., Qi, Y., Sun, P., 2020b. Petrogenesis of Late Early Cretaceous high-silica granites from the Bangong–Nujiang suture zone, Central Tibet. Lithos, https://doi.org/10.1016/j.lithos.2020.105788.

    [24]. Fan, J.J., Li, J., Wang, Q., Zhang, L., Zhang, J., Zeng, X.L., Ma, L., Wang, Z.L., 2020. High-precision molybdenum isotope analysis of low-Mo igneous rock samples by MC–ICP–MS. Chemical Geology. 545, 119648. https://doi.org/10.1016/j.chemgeo.2020.119648.

    [25]. Tang, G.J.*, Wang, Q., Wyman, D.A., Dan, W., Ma, L., Zhang, H.X., Zhao, Z.H.. 2020. Petrogenesis of the Ulungur Intrusive Complex, NW China, and Implications for Crustal Generation and Reworking in Accretionary Orogens. Journal of Petrology, https://doi.org/10.1093/petrology/egaa018

    [26]. Hao, LL; Wang, Q; Wyman, DA; Yang, JH; Huang, F., Ma, L., Crust-mantle mixing and crustal reworking of southern Tibet during Indian continental subduction: Evidence from Miocene high-silica potassic rocks in Central Lhasa block. Lithos, 2019, 342: 407-419.

    [27]. Ou, Q., Wang, Q., Wyman, D.A., Zhang, C.F., Hao, L.L., Dan, W., Jiang, Z.Q., Wu, F.Y, Yang, J.H., Zhang, H.X., Xia, X.P., Ma, L., Long, X.P., Li, J., Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Geological Society of America Bulletin, 2019, 131(7-8): 1385-1408.

    [28]. Hao, L. L., Wang, Q., Wyman, D. A., Ma, L., Wang, J., Xia, X. P., Ou, Q. 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen. Geology. 47(2), 187–190.

    [29]. Yang, Z.Y., Wang, Q., Yang, J.H., Dan, W., Zhang, X.Z., Ma, L., Qi, Y., Wang, J., Sun, P., 2019. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: Crust-derived magma mixing and melt extraction. Lithos. In press. https://doi.org/10.1016/j.lithos.2019.105199

    [30]. Ma, Y.M. Wang, Q., Wang, J., Yang, T.S., Tan, X.D., Dan, W., Zhang, X.Z., Ma, L., Wang, Z.L., Hu, W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W., 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697.

    [31]. Yang, Z.Y., Wang, Q., Zhang, C.F., Yang, J.H., Ma, L., Wang, J., Sun, P., Qi, Y., 2019. Cretaceous (~100?Ma) high-silica granites in the Gajin area, Central Tibet: Petrogenesis and implications for collision between the Lhasa and Qiangtang Terranes. Lithos, 324–325402-417.

    [32]. Hao, L. L., Wang, Q.*, Wyman, D. A., Qi, Y., Ma, L., Huang, F., Zhang, L., Xia, X. P., Ou, Q., 2018. First identification of mafic igneous enclaves in Miocene lavas of southern Tibet with implications for Indian continental subduction. Geophysical Research Letters, 45(16), 8205-8213. https://doi.org/10.1029/2018GL079061.

    [33]. Shen, X., Zhang, H.X., Wang, Q., Saha, A., Ma, L., 2018. Zircon U–Pb geochronology and geochemistry of Devonian plagiogranites in the Kuerti area of southern Chinese Altay, northwest China: Petrogenesis and tectonic evolution of late Paleozoic ophiolites. Geological Journal, 53(5), 1886-1905. doi: 10.1002/gj.3020.

    [34]. Wang, Q., Hawkesworth, C. J., Wyman, D. A., Chung, S. L., Wu, F. Y., Li, X. H., Li, Z. X., Gou G. N., Zhang, X. Z., Tang, G. J., Dan, W., Ma, L., Dong, Y. H., 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature communications, 7:11888, doi: 10.1038/ncomms11888.

    [35]. Jiang, Z. Q., Wang, Q., Wyman, D. A., Shi, X., Yang, J. H., Ma, L., Gou, G. N., 2015. Zircon U-Pb geochronology and geochemistry of Late Cretaceous–early Eocene granodiorites in the southern Gangdese batholith of Tibet: petrogenesis and implications for geodynamics and Cu ± Au ± Mo mineralization. International Geology Review, 57:3, 373-392.

    [36]. Shen, X.M., Zhang, H.X., Wang, Q., Ma, L., Yang, Y.H., 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251.

    [37]. Jiang, Z., Wang, Q., Wyman, D., Li, Z., Yang, J., Shi, X., Tang, G., Jia, X., Ma, L., Gou, G., Guo, H., 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213-231.

    [38]. Wang, Q., Li, X.H., Jia, X.H., Wyman, D.A., Tang, G.J., Li, Z.X., Ma, L., Yang, Y.H., Jiang, Z.Q., Gou, G.N., 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium‐rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle and magma hybridization. Chemical Geology, 328, 222-243.

    [39]. 蒙均桐,夏小平,马林,姜子琦,徐健,崔泽贤,杨晴,张万峰,张乐. 2021. 西藏冈底斯地区壳源岩浆水含量差异:来自锆石水含量的启示. 中国科学:地球科学.(待刊)

    [40]. 王强,唐功建,郝露露,Derek Wyman马林,但卫,张修政,刘金恒,黄彤宇,许传兵. 2020. 洋脊俯冲岩浆作用与成矿. 中国科学:地球科学, 63, 1499–1518. https://doi.org/10.1007/s11430-019-9619-9

    [41]. 徐义刚,王强,唐功建,王军,李洪颜,周金胜,李奇维,齐玥,刘平平,马林,范晶晶. 2020. 弧玄武岩起源:新进展与存在问题. 中国科学:地球科学63, 1969–1991. https://doi.org/10.1007/s11430-020-9675-y

    [42]. 王强,郝露露,张修政,周金胜,王军,李奇维,马林,张龙,齐玥,唐功建,但卫,范晶晶. 2020. 汇聚板块边缘的埃达克岩:成分与成因.中国科学:地球科学63, 1992–2016. https://doi.org/10.1007/s11430-020-9678-y

    [43]. 刘潇,王强,马林,王军. 2019. 广州市白云山片麻状花岗岩成因及构造意义. 地球化学,已接收.

    [44]. 王强,但卫,纪伟强,张修政,梁华英,朱弟成,夏小平,马林. 2017.中国西部燕山运动及岩浆作用与成矿. 矿物岩石地球化学通报36(4): 570-573.

    [45]. 王强,苟国宁,张修政,但卫,唐功建,马林. 2017. 青藏高原中北部地壳流动与高原扩展: 来自火山岩的证据.中国科学基金. 2017:2, 492-498. 中文核心期刊.

    [46]. 沈晓明, 张海祥, 马林. 2013. 阿尔泰南缘晚石炭世淡色花岗岩的发现及其构造意义, 大地构造与成矿学, 37(4): 721-729.

    [47]. 沈晓明, 张海祥, 马林. 2013. 阿尔泰南缘杰尔库都克酸性岩脉LA-ICP-MS锆石U-Pb测年, 新疆地质, 31(3): 157-161.

    [48]. 沈晓明, 张海祥, 马林. 2013. 新疆阿尔泰地区库尔提蛇绿岩的锆石U-Pb和角闪石40Ar/39Ar年代学及其地质意义, 桂林理工大学学报, 33(3): 394-405.

    [49]. 沈晓明, 张海祥, 马林. 2010. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据. 大地构造与成矿学, 34(2): 181-195.

    [50]. 张海祥,牛贺才,沈晓明,马林,于学元. 2008. 阿尔泰造山带南缘和准噶尔板块北缘晚古生代构造演化及多金属成矿作用. 矿床地质27(5): 596-604.

    [51]. 张海祥,沈晓明,马林,牛贺才,于学元. 2008. 新疆北部富蕴县埃达克岩的同位素年代学及其对古亚洲洋板块俯冲时限的制约. 岩石学报24(5):1054-1058.

    [52]. 马林, 张海祥, 沈晓明.2008. 库尔提角闪片岩中角闪石的地球化学特征及成因讨论. 矿物岩石地球化学通报, 27(增刊):262-264.

    [53]. Haixiang Zhang, Xiaoming Shen, Lin Ma. 2008. Geochronology of the Altay adakite and the initiation of the Paleo-Asian Ocean subduction. Geochimica et Cosmochimica Acta. 72 (12S), A1081.

    承担科研项目情况:
  • 1. 国家第二次青藏高原科学考察项目(STEP) (2019QZKK0702)2019-2023,参加。

    2. 国家自然科学基金委面上基金项目《羌塘西部红山湖钠质基性岩岩石成因及其对青藏高原地幔演化的启示》,2019-202266万,主持。

    3. 国家重点研发计划深地资源勘查开采专项青藏高原碰撞带壳幔过程与成岩成矿实验子课题第三专题《正向碰撞带深部岩石圈组成和热演化过程对成矿作用的制约》,2016-2020107万,主持。

    4. 国家自然科学基金委青年科学基金项目《拉萨地块南部正嘎早古新世淡色花岗岩的成因及其对印度-亚洲大陆碰撞的启示》,2015-201729万,主持。

    5. 中国科学院广州地球化学研究所135项目《青藏高原中北部新生代板内造山与成矿》,2016-2020200万,参加。

    6. 中国科学院战略性先导科技专项(B 类)的二级课题《高原深部岩石圈组成、热状态及演化过程》,2012-2017, 参加。